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PROB=S FOR ARBITRARY CASCADES. OF AIRFOILS

By William ?dutterperl

wnmdA.RY . . ““
Solutions of the direct potential problem for a

cascade - namely, to find the potential flow past an
arbitrary cascade of alrfolls - and of the inverse prob-
lem - namely, to find an airfoil having a prescribed
velocity dlstrlbutlon in cascade - are presented. The
methods used represent the extension to cascades of the
Cartesian mapping functlm method of conformal trans-
formation. Numerical examples of the direct and inverse . -
methods are given. The numerical labor required is con-
servatively estimated as double that involved for iso-
lated airfoil.~by the corresponding methods.

INTRODUCTION

The potential flow through a cascade of airfoils
bears approximately the same relation to the real flow
through axial and through some types of centrifugal
turbines and compressors that the potential flow about
isolated airfoil sections bears to the real flow about
airplene wings. A knowledge of the potential flow
through a cascade 1s therefore recognized as basically
important for the aerodynamic study and design of such
machines. The relative difficulty of making measure-
ments on airfoils in cascade further accentuates the
necessity of a potential-flow solution.

As was the case for isolated airfollss there are two
potential problems for the cascade that are of primary
practical importance. The firsts or direct problem, is
that of determining the potential flow past a given arbi-
trary cascade of airfoils. The second, or inverse prob-
lems is that of .de”rivlngan airfoil section to have a
prescribed surface pressure distribution In cascade.

The theoretical methods available for the solution
of these problems ares roughl~ speaklngs of three kinds,
namely:
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(1) Methods that re@rd a blade of the cascade as
an isolated airfoil operating in a flow”composed of a
free-stream veloclty and a disturbance velocity due to
all the other blades of the cascade- The method applies
best to cascades of thin airfoils with small solidity.
(See reference 1, p. 70, and bibliography contalned-
therefn.)

(2) Stream-filament methods, which regard the
space between the blades. of the cascade as channels of
varying area but in which the streamlines are uniform
or of simple curvature. These methods apply best to
cascades of high solfdlty in which, moraaver, the flow
is smooth (shock free) at entrance.

casca3\ Methods based on conformal transformation of the
These methods may be subdivided as follows:

(a) Methods based on the cmcept of the equiva-
lent cascade of flat plates; that is, the cascade
of flat plates with spacing equal to that of the
given cascade, with blade angle equal to the zero-
lift angle of the given cascade, and into which the
given cascade can be transformed conformably.
l%ten~ive use of this concept is made In reference 1,
on tinebasis of which are given approximate solu- .
tlons of the direct and inverse problems for cascades
of various types of shape and for various ranges of
solldity. The solutlons are approximate mainly
because of the inethads given for the determination
of the equivalent cascade from the given cascade
or vice versa.

(b) Particular conformal transformation that
yield special classes of shape for which the flow
can be calculated exactly (such as those of refer-
ence 1, p. 55, and reference 2).

(c) Exact methods for arbj.trary alrfolls
or pressure distributions in cascade, such as
those that exist for isolated airfoils.
this purpose,

For
Welnig (reference 1, p. 90) uti-

lizes the basic Mown transformation from a cas-
cade of flat plates to a single circle. By this
trangformatlon, the g~.vencascade transfoms to
a near circle. The near circle, p~-plane,l~ then
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,,,
transformed to a circle, p-plane, by a modification of ““ ““ ““”
the Theodor~en-Garrick procedure, (.r.e.f.er~nce..~)qonsfsting
In the use of log dpt/dp instead of log p~/p as
the mapping function. The transformation of the given
cascade to the near circle appears to be much more
laborious and the near circle much more different from
a circle than is the case for the transformation of
isolated alrfolls. Thts general procedure has recently
been treated in reference 4. A similar method has also
been used In a British paper by A. R, Howell. The
basic transformation that reduces the given cascade to
a stngle shape is taken as t = tanh’Z, where z is the
physical plane. Inasmuch as the resultlng ~-plane shape
Is not of near-circle type, several Joukowski transfarma-
tlons are applied to produce a near circle. The transfor-
mation from near ctrcle to circle is then accomplished by
the Theodorsen-Garrick methoR. This method, too, involves
an excessive amount of numerical labor.

In the present paper, the Cartesian mapping function
method of reference 5 Is extended to the solution of the
direct and inverse potential problems for arbitrary cas-
cades of airfoils. After an expasitlon of scme basic
properties of the Cartesian m.applng function for cascades,
procedures! are given for the solution of the direct and
inverse problems. The procedures are then Illustrated
by numerical examples.

Acknswledfrwi~nt 1s made to Mrs. Lois Evans Laran “:fthe
computing staff of the IansleT iull-?cale tunnel for her
assistance in making the calculations.

~~ol.~

z =X+iy plane of cascade of airfoils

L=g+lq plane of cascade of straiflhtllnes

P plane of unit circle

~ central angle of circle

Ax component of Cartesian mapping function (CM?)
parallel to chord

Ay component of Cart8slan mapping function per-
pendicular to chord

T displacement constant for locattng airfoil

..— .
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P blade angle of c~scade, measured between
chord line and normal to cascade dlrectlon

K parameter of transformation from cascade of
straight lines to un!t circle

?J( central angle of unit circle that corresponds
to extremity of flat ~late in cascade
(equation (7))

chord

( chord
solidity — )spaci-ng,

solldlty of cascade of straight lines

9 adjustment constant (equations (13) to (15))

Vz velocity at ftlrfollsurface

Vp velocity at surface of unit circle

v Pelatlve mean velocity In physical plane

w complex potential In circle p-plane

r circulation

h relative stream an@e (See fig. 5.)

% tan AK = tan A tanh E (equation (27))

‘Ki corresponds to Ideal stream anFle (equa-
t?-on (32))

tan ~
tan ~K = .~ (See equation (21])

1 lift force per unit len@h on airfoil in
cascade, perpendicular to relatfve mean
velocity

P

Cz

density

lift coefficient

()

z

F
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. .
a-....,,.,,-- , angle of attack, measured between mew rela-.>.......,,,..

“tive”stream di.reotion.,ad chord line......... .........

hf zero.lift angle, angle of..attack for zero
lift

6 an~le of deviation of relative flow from
leadlng- or trailing-edge direction of
airfoil (See fig. 51,)

k denominator of equation (30:)“

[
(sln2cp+ sfmh2K)

~-]

P pressure coefficient ~ - (*y]

Subscripts:

N II leadin~ edge (nose)

T trailing ewe

u upstream

d downstream

APPLICATION OF’CARTESIAH MAPPING FUNCTION TO CASCADES

The general scheme of application of the Cl&?to
cascades of airfoils was indicated in reference 5.
Basically, the method consists in relating conformably
the points of an afrfoil in cascade to the points of
its extended chord line by means of the vector differ-
ence between pairs of corresponding points. This
vector difference, called the Cartesian mepping function
(Clm), iS a functton of posl$ion in any of the mapping
planes used. It Is re,gular-d periodic In the entire
region outside the airfoil boundaries, in the corre-
sponding region outside the straight lines, and is
regular in the entire region outside the single unit
circle Into which the preceding regions can be confor-
mably transformed. Instead of the simple Joukowski
transformation from the isolated straight line to the
circle, however, as was used for-the isolated airfoil,
the more complicated but well-known transformation from
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a cascade of straight lines to a circle Is now necessary
to express the CMZ’as a regular function outside the
circle. Various preparatory details of these transfomua-
tlons are next set down, prior to a discussion of the
general direct and inverse problems for cascades.

CM!?for cascades.- The CMF from the cascade of air-
foils to he oascade of flat plates Is taken as z - !.
(See fig. 1.) Because z - ~- IS regular everwhere
outside the cascade of flat plates - in particular, in
the Infinite strip outside one plate that maps Into the
entire region outside the unit circle - it is regular
ever~here outside the circle and is therefore expres-
sible by the inverse power seriesl

(1)

On the corresponding boundaries of airfoil., flat plate,
and circle

z - c = (x -g) + ly

E Ax + My (2a)

and

P = el~ (2b)

Substltutlon of equations (2a) and (2b) In equation (l),
with cn = ~ + ibn, gives for AX ~d Ay the con-

jugate Fourier series
a

Ax(Q) = a. + ‘a
in

cos nq +
z

bn sln nq (3)

1

lThe mapping function chosen is periodic with respect
to the same strip In the ~-plane that maps into the
entire p-plane region outside the unit circle. The
necessity of introducing a cut in the Infinitely many-
sheeted p-plane is thereby eliminated.
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+“
...-..-. .. . . ... . . . . ,...AY(cp)R b..+ ~bn

1

‘7

m

C08 nq -
2

an sin ncp (4).......... ..
1 “’-”””””””””

The correspondl,ng i’ntegralrelations between Ax and
Ay are the same as in reference 5.

Flat-plate transfozznatlon.- The transformation
from the cascade of flat plates, ~-plane, to a single
unit circle, p-plane, which makes the CMF a function of
the central angle Q of the circle, is (fig. 2 and
references 1 and 6)

~-T=e * + e~P,loge p + e-K
(5)-1~ 10ge e~ -“p

P -e -K

is periodic in ~ with a cascade
2TT. The points L = *~ corre-
The constant displacement ? is
convenience in locating the cascade

This transformation
spacing (period) of
spor.dto p = *eK.
inserted for future
of airfoils. The correspondence between points on the
flat plate and points on the circle is obtained by
substituting t = ~ + iq and p = ei~ in equation (5).
The result is

~=T+COS ~lo~e -1 sinq ‘cosh K+cos Q+2~wPtm —
cosh K- COS Q LsinhK (6)

q= o J
The ansles ~~{~@K + m that correspond to the extreml~

ties of the flat plate are obtained by maximizing ~ in
equation (6) with respect to Q, The resulting condi-
tion is

tan (+f=tanptanhK

Subfltitution of equation (7) In equation

~m~ - ~fin
solidity 01 =

2Tf
of a cascade

(7). .

(6) gives the

of straight

1 ... —— —
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parameter K

(q = ( Vsfnh2K+ COS2~+ COEi ~
:“COS p loge

sinh K

+ sln (3tan-1 sin P

slnh2K + CoSap
)

(8)

It is remarked that,in the applications which are
to be gfven, values of ~ corresponding to selected
Q-values will be detemained from equation (6). The .
relatively more difficult inverse calculations of Q
for a given ~, or the still more difficult calcula-
tion of p for a given ~ by equation (5), will not
be necessary. Therein lies the essential numerical
simplicity of the CMF method for cascades.

Alrfoll position and adjustments in terms of CMF.-
The coordinates x, y of the alrfoll correspondin~
the points at the angular positions g on the unit
circle are obtained from equations (2a) and (6) , as

x cosh K + COS Q= T + COs ~ 10ge Cosh K
- Cos Q

+ 2 sin ~ tan-l QQ-Q- + Ax(Q)
si~ K

to

(9)

Y = AY(VI) ( 10)

As was the case for isolated airfoils, It will be
necessary to find for cascades thg points on the circle
corresponding to the chordwise extremities of the air-
foil. The abscissa x In equation (9) Is therefore
maximized with respect to 9. The resulting condltlon
fs “
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. .. . dAx C sin (Q - $K),-------....- . ............ ._-.-,.
dq .s~2K “+--aln2-@

(11)

where

cod+3 + sinh2K (12)

and ~ Is defined by equation (7). Equation (11) is

solved (graphically) for the angles q+~ and ~ corre.

spending to the leading and trailing edges of the air-
foil (defined as the extremities of the airfoil abscis-
sas).

The solution of equation (11) will usually be
carried out in connection with such an adjustment of the
airfoil that the extremities are symmetrically located
and add up to a desired chord (solidity). The adjust-
ments are similar to the horizontal and vertical
stretching for the isolated airfoil. The horizontal
stretching adjustment consists in findinfl the length of
straight line, that 3s, K, by equation (8) since ~
is the known an~le of the airfoil chord line, which with
a given Ax(Q) will place the airfoil extremities at

&= *no, where. o is the given solidity and c is

the airfoil chord. The vertical stretching adjustment
consists in finding, for a given length and anfileof
straight line, the factor S by which to multiply a
known Ax(q) in order tha~ the resulting airfoil will
have its extremities at

*Z = *mo~ where again a is
the desired solidity. The equations for these adjust-
ments are obtained by equating the abscissas of the
airfoil extremities to their desired values; that is,

= T + ,Cos p loge

+2 sin p tan-l

cosh K + COS ~

cosh “K- .COS ‘~J ‘

sin qN

~ + SAXIJ (13)
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+.-2sin p tan-l

cosh K + cos ‘%
cosh K - Cos *

sln ~
— + SAXT
stnh K

(14)

In addition, equation (11) for the airfoil extremities
Is rewritten as

(15)

Subtraction of equation (14) from equation (13)—
yields

cosh K + COS

2?TU=
( )

%
COS ~ 10~e

cosh K - COS ~

[ <=)+.-2sin (3tan-

(+ S AxN - AXT)

(
cosh K - CC)S

‘%

)
cosh K + COS VT

- ‘an-i-)
(16)

Addition of equations (13) and (14) yields

( xcosh K + COS ~

)

cosh K + COS ~

-2T = cos P loge Cosh K
- cos ~N cosh K - Cos q

[ -’(=)+‘m-’(-$l+ 2 sin p tan

+-s (AxN + AXTI (17)
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~ the horizontal stretching adjustment, equations (15)
and (16) with S = 1 ar~ solved simultaneously for K,*..,-. ON;. 8nd.-qTj..wl%h...@....Qd-.Q.,@~9ns. .?.~.??:.‘e.?t.!ca?

stretching adjustment, equations (15) and (16) are solved
simultaneously for S~ ~~ and ,~, with K, P, “and

u given. Finally, equation (17) 1s solved for ?.

Velocity and pressure dlstributionk.- Once the con-. formal correspondence between a cascade of airfoils and
the unit circle has been obtained - that Is Ax(O),
AY(Q), K, ~, and ~ - the velocity at the alrfoll

surface is given as usual by the product of the velocity
at the corresponding point of the oircle and the
stretching factor from the circle to the airfoil, as

(18)

The velocity in the circle”plane. is that due to a
superposition of sources and vortices at the points

P
; &tK

(fig. 3), which reproduce the de~ired fl~w
conditions at i~ in the phys:cal plane and which
maintain the unit circle, and hence the cascade of air-
foils, as streamlines (reference 6) . The effect of a
source at p = ~K is to produce a velac!ty at z = =
frbm ripht to left of magnitude ~; that-is, the

—..
m 13 where mcomplex velocity is -~e , . is the total flux

of the source. This fact is evident from the complex
potential for a source and the transformation (equa-
tion (5)) betw~en p-plane and ~-pls.ne. The addi~i~nal
effect of an equal source at the image point p = - ,
together with an equal sink at the origin, Is to make
the circle (hence the cascade of flat plates an~talr-
foll~) a streamline while maintaining the same flow
condition at infinity. the effect of aS~-ila&~~ la to produce a
counterclockwise vortex at p 3-
downward veloclty at z =“- of magnitude ~; that 1s,

Ik i
the complex velocity is me ~, where k is the vortex

circulation. The additl.onal effect of an equal and
opposite vortex at p = e‘K Is to make the circle a
streamline.

If the flow conditions at infinity in the physical
plane are taken as consisting of a mean velocity V at
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angle A (fig. 1), on whtch Is superimposed the tan-

gential velocity *A at z =“$ca to correspond to the

circulation about the ai”rfoll r (positive clockwise),
the complex potentltil in the circle plane is that due to
the system of sources, sinks, and vortices indicated in
figure 3; namely,

(19)

The circulation I’ is fixed by the Kutta condition of
smooth flow at the trailing edge in the physical plane

‘~ in equation (19).or dW/dp = O at p = e The
resulting circulation Is

r= 4Tfv sin (~r~ - ‘) (20)
Shh K cosh K

where

(21)

It Is noted here that the resultant force on an
airfoil of the cascade 1s, by elementary cascade theory,

2= pvr (22)
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where Z acts pe~endlcular to the relative mesh “
...- veloclty.. V .....TQe.lift.coefficient of the section based

on the relative mean velocity V“.’”l-#””;thep~fOr~,~tth
c = 2Tfo, .

(23)

3ettlng

AZ a+p (24a)

and

(24b)

and from equations (20) and (23), the lift coefficient
of an arbitrary airfoil In cascade is

sin (a + (kf) (25)

The angles a and pT are, respectively, the mean

relative stream angle of attack and the zero-lift angle
measured from the airfoil chord line. Equation (25)
1s seen to be similar in form to the corresponding
equation for isolated airfoils, to which it reduces in
the limit of zero solldlty.

With the circulation of equatton (20), the velocity
distribution on the unit circle is obtained by differ-
entiation of equation (19) and substitution of D = ei~,
The result is -

+
2 Cos% + sinh~K=

sin% + slnh2K

-——-—— ---- .—-
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where ..

tan AK ~tanAtanhK (27)

l-qdThe stretching factor” ~p from the circle plane

to the flat-plate cascade plane Is obtained by differ-
entiation of equation (5). The result Is equal to
VP(Q) (equation (26)) with tie circulation term ofitted
&d A = ~. (The transformation (5) can, in fact, be
derived (reference 6) by a hydrodynamlcal argument
similar to that leadfng to equatfon (19).) Thus,

where

[J
&- .
dp

~K has been defined by equation (7), and

1+1+d
-P

depending on the sign .of Q - P~9

(28)

The over-all stretching factor IIs from the

circle plane to the physical plane Is obtained by dif-
ferentiation of equation (2a),

..

. “.

or
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The veloclty distribution at the surface of an
arbitrary airfoil in cascade Is “-therefore,by equa-

... ..,.. tions (18)ati..:(~).40.,. (2Q]E.. ..-~,.................

00S2A + sinh2K~i.n {q”- AK) - sin (~ - hK)
Vz
T=”

)~ %] -%?+ ($&y

(30)

(sin2Cp+ sinh2K

The numerator of this expression is seen to be dependent
on, but the denominator independent of, the Stream
a@e A.

The pressure coefficient
equation

2

u

v=
Pi-y=

where P is the ratio of the
pressure over the pressure at

.

is given by Bernoulll?s

(31)

local increment of static
which the velocity Is the

mean stream value V to the dynamic pressure ~pV2.

Inte~ratlon of this pressure coefficient around the air-
foil section yields the lift coefficient defined by
equation (23).

The expression for the Ideal angle of attack may
be noted. This angle 1s the mean relative stream angle
for which the leading edge of the airfoil, corresponding
to q) = ~ on the unit circle, is a stagnation point.

It is obtained from th~ condition VP(Q) = O in equa-
tion (26) as

‘K1 =
%+%-”

2
(32)

$(~:::responding angle of attack measured from the
chord line is given by equation (24a).)

Conversely, for any stream angle h, the front stagna-
tion point is given by

(33)

I —.
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Superposition of solutions.- Equations (3) and (4)
that he sum of two ‘s Is itself a CMF. Thus,

as for isolated airfoils, the superposit$qn of soluti&s
for airfoils in cascade is permisai~le. Various types
of superposition are posstbls because the solfdfty and
stagger parameters K and ? used with a resultant
Cl@ need not be the same as either of these parameters
used with the component CMF~ss The use of superposition
1s impliclt In the horizontal and vertical adjustment
derived previously for an airfoil In cascade.

Equivalent flat-plate cascade.- The many useful
results of reference 1, which are dertved and presented
on the conceptual basfs of the equivalent cascade of
flat plates, make it worth while to note some of the
properties of the equivalent cascade. In general, the
conformal transformation of a cascade of airfoils into
a unit circle determines at the same time every possible
cascade of flat plates into which the given cascade can
be conformably transformed, with the spaces at ~~ cor-

responding and equal. All such cascades of flat plates
transfom to the unit circle with the same locations for

the points p = +eK corresponding to the points tm
in the cascade planes. The parameter K of the flat-
plate transformation (equation (5)) is therefore fixed.
Of the infinity of flat-plate cascades corresponding
to the remainin~ parameter, namely, the sta~ger angle P,
that one of which the stagger angle equals the zero-lift
stream anFle of the @ven cascade is by definition the
equivalent cascade of’flat plates. ‘Thisstagger an~le

‘s ‘TX
by equation (20). Equation (21) then shows

that the angle gT corresponding to the trailing edge

of the airfoil in cascade corresponds also to the
trailing edge of the equivalent flat plate.

The solidity of the equivalent flat-plate cascade,
as gl.venby equation (8), is evtdently somewhat larger
than that of the given cascade. For a given stream
angle A, equation (20) shows that the circulation r
and thus, by equation (23), the product UCZ are the

same for the two cascades.

The velocity distribution in the airfoil cascade
at one stream angle may be converted to a veloc!ty
distribution at any other stream angle by a knowledge
of the equivalent cascade, because the ratio of the
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velocities at two different stream angles is the ratio
........-..... of..the..~omrrespondingnumerators in equation (30).

Inasmuch as thg-””iionstants”’.of‘the-n~erator in .equa-.. .
tlon (30) are the same for the given cascade and the
equivalent cascade, the desired velocity ratio equals
that for the equivalent cascade . This result Is
analogous to tlmt for Isolated airfoils and their
equivalent flat plates. It is useful when the equlva -
len”tcascade can be easily detemined to a satisfactory
approximation (cf. reference 1). If the correspondence
between an airfoil in cascade and Its equivalent flat
plate in cascade Is known with sufficient acouracy,
however, the CMF of the transformation Ax(Q) + iAy(q)
can be set up and the velocity distribution obtained
directly by equation (30).

SOLUTION OF DIRECT POTENTIAL I’ROBIJWFUR CASCADES

The direct potential problem for cascades of air-
foils is that of determining the general potential flow
past, and in particular the velocity at the surface of,
a known arbitrary airfoil in a cascade of given
solidlty a and stagger angle (3 (fis. 1). The solu-
tion is analogous to that in reference 5 for isolated
airfoils. The method is one of successive approxima-
tion, whereby an airfoil of which the (XF transformation
to its ‘chord-line” cascade md hence to the unit circle
is known is comp~red with the Riven airfoil to obtain
an Incremental CUF. The increfiental
CNF yields an airfoil that may again
the given airfoil, and so on.

The steps in the process are as

CNF plus the known
be compared with

follows:

Step 1: An airfoil in a cascade of stagger ~ and
solidity U is given and an Initial airfoil is assumed,
for which are known the CMF AxO(@), AY (Q), the
angles gNoS VTO corresponding to the ~eadlng and

trailing edges, the cascade parameter Ko, and the
translation constant

‘o - all adjusted for a cascade of
the given stagger and solidity. The chordwise locations

‘o for this airfoil corres~nding to a set of evenly
spaced values of Q on the unit circle are calculated
by equation (9).
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Step 2: At the cihordwlse locations Xo, the dif-
ferences 6Y~ = Ay~ - Ayo between the ordinates of the
given airfoil and those of the assumed airfoil are
obtained, graphically or otherwise, It 19 Important that
the given airfoil be located relative to the caordlnate “
axes ae shown In figure 1 and that, when the afrfoil
ordinates ~Y~ are obtained, the airfoil boundary be
traversed (counterclockwise) in the,.saresense as is the
extended chord ltne.

Step 3: The corresponding conjugate chordwlse-
dlsplacenent increments 8X1 are now calculated In
accordance with equations (3) and (4). The slopes
d8x1/dq and dOyl\dq are also computed by means of
the corresponding derivative Fourier eeries. Details
of this calculation are given in appendix A of refer-
ence 5.

Step 4: The first-approximation Cl!?,namely,
Axl = Ax. + 6X1 and Ayl = Ayo + 6Y1, and the corre-

sponding slopes dAxl/dq, dAyl/dQ are now known. In

conjunctlan with the constants Ko, ~?s qos and ‘9
of’the in~tial airf’~il, this c’~ w~uid, in general,
determine an airfoil (equations (9) and (10)) ~f which
the extremities (equations (11), (13), and (14)) would
not add up to the desired chord (c = 2n6), although the
stagger angle ? (of the x-axis chord) is correct.
The constants ~, ol~n,~Tm, and To are therefore

corrected by a horizontal stretching adjustr.ent (equa-
tions (15), (16), and (17)) such that the ~esulting
constants Kl, ~,s ‘%?s and 71 yield an airfoil of

the desired chord: ‘

Step 5: The new chordwlse locations xl are cal-

culated by equat~on (9) with the constants derived in
step 4. The resulting airfoil, of coordinates xl.,Ayl,
is compered with the given alrfo!.1. Tf the agreement
is not satisfactorily close, steps 2 to 5 are repeated,
all subscripts being advanced by one.

Step 6: If the agreement is close enough, the exact
velocity distribution of the airfoil just derived (which
Is thuc a close enough approximation tc the velocity dis-
tribution af the given alrfoll) is calculated as indicated
in the section ‘Velocity and Pressure Dfstributlons.ll
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SOLUTION OF INVERSE POTENTIAL PROBLEM FOR CASCADIZS-- .. .. . .. . ... ... ..- .------- ..... . . . . .. .. ..,,,, . .. ...- ... ,- ,,,. ., .,,,,,, ..... . .,,.,. . .. ----- ...

As compared with the Isolated airfoil, there are
several possible variations of the inverse problem for
cascades, depending on the over-all cascade data given ‘
in addition to the prescribed velocity.distribution.
These cascade data include the ultimate upstream and
downstream flow angles considered as one quantity, the
eolidity (Y, and th’estagger sngle p. Of these three
quantities, it appears that two may be specified
independently along with the prescribed velocity dis-
tribution.

The inverse problem for cascades can be solved by
the method of comparison of surface potentials given in
reference 5 for the case of the Isolated airfoil. A
numerical example, howev~r, disclosed sev~ral difficul-
ties of application. The over-all adjustment for one-
to-cme correspondence of the true and approximate
potential curves was unduly laborious. Further~,ore,
the first exact velocity distribution ~btalned oscil-
lated about the prescribed distribution thrmgh wide
limits. This oscillation appeared to be caused by the
somewhat Indlrcct methad of determining 5X(Q),
resultin~ in inexact and oscillatory values for the
derivatives dA~/dq),dAy/dqa

The more strai~htforwar~ ~Leth~d of derivatives,
namely, determining dAx/d(p, d.Ay/do directly from the
prescribed velocit~ dlstribut~on”, was therefore resorted
to ● As remarked in reference 5, the method can be

regarded as based on the use of the function ipQ@.#1 .

This function is single-valued and regular everywhere
outside the unit circle; it approaches the limit zero
as p~tD and on the unit circle itself p = el~

reduces to ~ + l%. If, therefore, these deriva-

tives can be so determined as to satisfy the expres-
sion for the prescribed velocity distribution (equa-
tion (30)), the airfoil itself can then be obtained
by a simple integration.

The determination of the derivatlve~ can be made
by successive approximation. The constants A, K are
fixed to satisfy approximately the over-all cascade
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data previously mentioned. Inasmuch as the derivatives
dAx/dcp,dAy/dcp are of the sane order of magnitude for
the shapes to be dealt with, it Is apparent from the
structure of the radical In equation (30) that dAx/dcp
will exert a greater influence on the velocities aver
mat of the airfoil than will dAy\dQ. To a given
approximation, dAx/dq can therefore be solved for in
terms of the prescribed velocity Vz and the data
dAy/dq, A, and K of the previous approximation. A
new dAy/dq can then be calculated as the function
conjugate to this dAx/dq; and A, K can be corrected -
to serve as the basis for the next approximation.

The steps of the inverse process are outlined as
fallows:

Step 1: A velocity distribution expressed as a
function of percentage chord or arc and the appropriate
cascade data are given. The definition of the chord and
the prescribed velocity distribution are taken as in
reference 5. An initial alrf’ollis assumed, which ic
judged to produce approximately the desired conditions
and for which the cascade CMF Axo, Ayo is homo

Step 2Z If the given cascade data are the solidity u
and stagFer angle ~, a horizontal &djustrtent 5s applied
to the CMF Axo, Ayo to achieve these values; that is,

equations (15) and (16) with S = 1 are solved far K&,

%0 ~ and W. with the given values of as 9- Thence,

equation (17) is solved for Tc“

Step 3: Tbe lift coefficient Czo corresponding

to the prescribed velocity distribution is obtained
approximately as the area under the curve of ckordwise
pressure distribution. A correction t~ this cZ, if
nece~sary, is obtained by integrating the chordwlse
perpendicular pressure components of the prescribed
distribution on the Initial airfoil.2 The required

%quetions (22) and (23) are dynamical equattons, holding
only for simply connected airfoils to which Bernoulli’s
equation applies. In order to preserve the consistency
of the CHF equations for fi.gure-eigb.tcontours, the
circulation r can be appr~ximated and equation (20)
can be used directly.
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stream angle ho for this czO and CJ is calculated
-,........A..

from 0q”-tlons-”(23)-and-(20) by use..of..qTo and...pf ....pf

step 2. If the ultimate upstre”m and downstream flow
angles are specified ins,teadof the solidity, S.n”exttia
relation between 1’ and h is known. If this relation
and equation (23) are substituted In equation (20),”an
equation relating ~, K, and o results. This equa-

tion is solved simultaneously with eq”uatlons (15) and (16)
for” ~o, ~o, Ko, ~d CYo. These values then deter-

mine I’o,AOJ and O.. A similar situation exists if

the upstream and downstream angles and the solidity 0,
Instead of the stagger angle p, are specified.

Step 4: With the constants derived, the chordwlse
locations X. are calculated by equation (9) for a set
of evenly spaced ~vnlues.

Step 5: The first approximate derivative dAxl/dq

is calculated by solution of equation (30) with the
constants already derived, the prescribed velocity vz/v
corresponding to the chordwise locations ‘~ J and the

initial dAyo/dq.

Thus ,

(34)

Two possible sets of values for dAx#dq result from
this calculation, de ending on the sign of the square

Yroot In equation (34 . It appears that for about one
half the @-values, one set of dAxl/d@ roots should be
taken and for the other half, the other set. The
resulting dAxl/dq should be of the right order of
magnitude to lead to a real airfoil. Any imaginary
roots that occur are replaced by the most favorable
real values. (The assumption is that a real.solution.
exists and that any Imaginary values of dAx/dq In
equation (34) are the result of too poor an initial
choice of dAy/dP.)
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Step 6: The derivative dAyl/dq conjugate to the
dAxl/dq .of step 5 is calculated in accordance with the

derivatives of equations (3) and (4). The functions
Ax1 (Q), AY1 (g) are ther.obtained by integration. If

the difference

Is small,it may be
required accuracy,

more convenient, because of smaller
to compute the Increments d6y#d@,

6X1, and 6yl and add them to the correspondhg values
of the previous approximation-

Step 7: The horizontal adjustment of step 2 and
the calculatflon of the stream angle ‘1 J step 3, Is made

by using the flrst~approxlrmtlon CM? derived in step 6.

Step 8: The chordwlse locations xl are calcu-

lated as in step 4 by using the constants derived in
step 7.

Step 9: The first approximate airfoil and its
exact velocity distribution are calculated by equa-
tions (9), (10), and (30). If the velocity distribution
is not satisfactorily close to that prescribed, the
procedure Is continued with step 5, all subscripts being
advanced by one.

ILLUSTRATIVE ~EXAMPLX

Direct method.- As an Illustration of the direct
method, a cascade of solidity a = 1 and blade
angle p = 45° was assumed, together with the given
airfoil section shown in figure 4, of which the ordinates
are given In table I. In the resulting cascade arrange-
ment (fig. 1) the flow is from right to left (compres-
sion action).

As a preliminary step, the direct CMF r.ethod
(reference 5) was applied to the given section considered
acting as an isolated airfoil. The resulting CMF and
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transformation constants are given In ~ab16s 11 and 111,
respectively. It is remarked that the relatively poor..... "tnltial"~?proximtton"chasen~""'nm.ely;-"'a""Joukowsklairfoil
of 6-percent camber and 12-percent thickness, necessi-
tated three ap roximations before colncidericewith the
given airfofl 7to a scale of chord length equal to 20 in.)
was attained. . .

For the airfoil in cascade, the procedure outlined
In the section ‘tSolutionof Direct Potential Problem
for C&scades’iwas followed. In accordance with step 1
of the procedure, the Initfal approximation was taken.
as the cascade of chord lines of unit solidity and 45
blade an~le. The initial CMF was thus Axo = Ayo = 0.
The parameter ~, as determined from equ&tlm (8)

with UZ = 1 and ? = 45°, was 0.332. The chordwlse

locations X. were c~lculated from equation (9), with
T =Ax=Oo

Steps 2 to 5 were then carried out. The resultlng
first approximate “airfoili~ is sk.ownIn fi~ure 4. The
abscl.ssas are the chordwise locations xl (Q) of the
first approximation and the ordinates & tlnse of the
.~lven airfoil at the cho~~wise locations ~o(o) af the
initial approximation, which are indicated ~n figure 4.
The first appr~ximatlon Is seen to have accompli~hed
most of the required cbanfiefrom.the chard line to the
Piven airfoil. Tbe resulting shape is not a physlca].ly
real airfotl, however, because of the loop toward tl~e
trailtng edpe.

A second approximation gave results ~hown in f’~g-
ure 4. The agreement over most of the ai.rfollIF prod,
although appreciable departure over the front upper
surface and a slight loop near the trailing edge still
remained. A third approximation removed practically all
the remaining di?crepancles. The points that mere ~tlll
perceptibly different are indicated in fl~ure 4. A
fourth approximation gave coincld~nce with the plven ai.r-
foll to a ecale of 20 inches for the length of ckord.

The coincidence of the fourth approximate airfoil
with the ~lven airfoil was obtair.ed for 24 points
(besides the leading and trailing edges) . These points
correspond to 24 evenly spaced values of q on the unit

—. —--- - . .. - . . . .. . - —.-—-. . . . ..—
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circle, It is seen from figure 4 that the airfoil
points are sparsely distributed on the front upper sur-
face and rear lower surface, as compared with the rest
of the airfoil. Thl# distribution Is due to the
influence of the flat-plate transformation (equation (6))
in affectlnp the airfoil abscissas (equation (9)).
Since the CMF was obtained in the form of 24-term Fourier
expansions, it was thought that airfoil points obtained
by interpolation from the derived CMF might show some
waviness relative to the &iven airfoil in these regions.
Five such interpolated points are given in table II and
are shown in fipyme 4. The waviness appears to be
negligible in this case. It is noted that any desired
spacing of points on the “airfoil could be obtained by
working with appropriate unevenly spaced q+points on
the unit circle; however, the determination of Ax(cp)
from Ay(Q) becomes more laboricus.

The slight waviness in the Fourier expansions for
Ax(o) and Ay(@) gives rise to greater oscillations
In the corresponding derivative expansions for dAx/dq
and dAy/dO. In this example, the slopes were computed
by harmonic synthesis of their Fourier expansions, and
the results were smoothed out graphically to correspond
to a faired curve through the 24 lmown values of Ax
or Ay. The llmits of oscillation of the derivative
curves were small enou@ that no apprecl ble error was
believed to be incurred in this process. 8

31n extreme cases, where the higher harmonics In the
Ax(Q), AY(@) curves are large, the oscillations of
dAx/dg, dAy/dcp may lead to appreciable inaccuracy of
the veloclty distribution. It is possible, however,
to solve initially for the derivatives dAx/dQ, dAy/dQ
Instead of Ax(Q), Ay(Q) by working from the slopes
dy/dx of the given airfoil, for

q_ dy
dx - d(~ + Ax)
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The resultlng CMF?s and the transfonmtion constants
for the airfoil in cascade are given In tables II and IIIfi

,... respective”ly~”.-The-’col~ of values of..--k. undeW-llCascade
in table 11 gives the values of the denominator @ equa- “
tion (30) for the veloclt~ distribution. This factor
does not change wlthcangle of incidence of the flow.

The variation of lift coefficient with angle of
attack for the cascade arrangement (eqtition (25)) was
obtained as

CT = 4.65 sin (a.+ 1004?)

where, it wI1l be recalled, CZ is based on the mean

velocity V and g Is the angle between the mean
velocity V and the choserichord line. The llft-
coefficient variation for the Isolated airfoil was
obtained as

c1 = 6.8G sin (a + 11°22~)

.wlth the result that

Thus, to a given approximation, dAy/dQ can be deter-
mined from the known data of the

f
revlous approximation.

To the given approximation, dAx dcp Is then the,func-
tion conjugate to dAy/dq . The derivative dAy,dQ can
then be determined to a better approximation, etc. In
each.approximation, an exact airfoil is determined by
Integration of dAx/dQ, dAy/dq (the integrated Fourier
series are smoother than the original series) . This
method for the solution of the direct problem is the
counterpart of the method of derivatives in the inverse
problem. The accuracy of the derivatives dAx/dq, dAy/dcp
thus dete~lned depends primarily on the accuracy to
which the airfoil slopes dy/dx” are known. Corre-
spending remarks apply to the Isolated-airfoil case,In
which, however, the higher harmonics are usually of
less magnitude.
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4-65
The ratio of’lift-curve slopes is thus ~ = 0.6’78 and

●

the zero-lift angle for the cascade has been reduced by
1°18? ●

The equivalent cascade of flat plates has a stagger
angle of 45° - 10°4~ = 34°56~ and the solidity, as
dete~~:~d by equation (8) with ~ = 34°561 and
K= ● , iS al=l.190 It may be noted that the

ratio of llft-curve slope of the equivalent cascade to
the isolated-plate value 2Tf Is 0&624, which is about
8 percent less than the value for the given cascade.
The corresponding ratio for the chord-line cascade
(p = 450, ~ = 1) Is 0.844, or about 25 percent higher
than that for the given cascade. If the equivalent
cascade were based on thg isolated-airfoil data, namely,
o
}

= 1.0912 and (.3= 45 - 11°22~ = 33°38~, the ratio
o lift-curve slopes of the equivalent cascade is 0.655,
which is a satisfactory approximation to the true value
in this case.

The variation with lift coefficient of the various
flow angles of the cascade as well as the over-all
pressure-rise coefficient based on mean dynamic pressure
Is given in table IV. The values were calculated by
means of the velocity triangle of the cascade (fig. 5).
The deviations ~Ns ~T of the upstream and downstream

flow angles from the mean directions of the leading and
trailing edges of the airfoil (fig. 5) are also given.
The downstream flow angle Ad is seen ta renah essen-

tially constant as the upstream flow angle is varied.
In this respect, therefore, the cascade acts like one
of infinite solidity. The deviation 6T of the down-

stream flow from the direction of the trailing edge is
large, however (about 180).

me velocity distributions of both the isolated
airfoil and the airfoil in cascade. are shown for zero
lift coefficient in figure 6 and for various other lift
coefficients in figures 7 and 8. The velocity distri-
butions at zero lift may be compared directly. Zxcept
near the leading and trailing edges, the velocities for
airfoils in cascade are higher than the velocities for
the isolated airfoil. This result maT be ascribed to
the constricting effect of two neighboring blades of
the cascade on the streamlines between them. The
velocity bump about 60-percent chord back on the upper
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surface of the airfoil in cascade Is probably caused by
the sqdd,ep.rgte of change of flow area in this region
due to the pre-tidncd’of”-”theupper neighborhg.blade
(fig. 5). At the leading edge, the velocity peak is
lower for the airfoil in cascade than for the isolated
alrfoi.1,p“robablybecause of the effect of the lower
adjacent airfoil in deflecting the upstream flow upward
toward the nose. .At the trailing edge, the velocity is
lower for the airfoil In cascade than for the isolated
airfoil, probably because the upper adjacent airfoil
provides a divergent channel for the streamlines in
this region.

The proper basisfbr comparison of velocity distri-
butions of the Isolated and cascade airfoils at lift
coefficients other than zero Is not clear. Because
the cascade velocities (fig. 8) have been expressed as
fractions of the mean velocity, the velocities toward
the leading edge are higher than if the ultimate up-
stream velocity had been used as a base;whereas, t“oward
the trailing edge, the velocities are lower than if the
ultimate downstream velocities had been used as a base,
The ultimate upstream and downstream velocities for the
various lift coefficients are indicated by the hori- “
zontal lines In figure 8. In general, it appears that
the adverse veloc~ty gradients near the leading edge are
less for the airfoil In cascade than for the Isolated
atrfoil, whereas the adverse velocity gradients near
the upper-surface trailing ed~e are greater in the
cascade cage.

The ‘fidealt~velocity distributions, which produce
a stagnation point at the chordwise extremity of the
airfoil, are those for Clisolated = 1.28 and

Clcascade = 1.17. It 1s seen that small velocity peaks

are present on the lower-surface leading edge under
these conditions. These peaks are removed in the
Isolated-airfoil case at c1 = 1.50 and for the cascade

at about CL = 1.30 without producing peaks on the
upper surface. The incidence of the upstream flow rela-
tive to the chord line is 15°24~ in the case of
al = 1030.

The four approxirmti.ons in thts example were carried
out without any attempt at picking off the ordinates in
order to anticipate the resulting change ‘in chordwlse. .

#
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location. It may be expected that, when more favorable
Initial approxhatlons than the chord line are avail-
able, and with some experience in anticipating chan~es
in chordwise locations, no more than two approximations
will be neceesary for accurate resultF - that is,
results less than 1 percent in error.

Finally, It may be noted that the CIMFderfved for
the given alrfoll can be used as a good Inltlal approxi-
mation not only for gl~.ilarairfoils !n compressor
action but also for airfoil.s in turbine action. For
this latter application, the airfoil would be drawn
with the camber on the same staleof the chord line as
In flpure 1. The flow is then from left to right; that
J.g, X Is increased by 180°. This procedure appears
more favorable numerically than drawing the airfoil with
the camber on the other side of the chord line, which
would maintain the flow from right to left.

T.nversemethod.- In order to il”LUStratt? the inverse
method for cascades, the velocity distribution at
cl =.1.3 of the alrfotl just analyzed was madlfied as

indicated in figure 9. The corresponding prescribed
pressure dlstrihutim 1s constant up to 50 percent
chord and thereafter Increases li.nearl.yto the trailing
edge. The pr~scrfbed cascade data were taken as
D =1, p= 45. The ultimate upstream and downstream
angles, or blade circulation, were expected to be a’oout
the same a~ those for the infltial airfoil In cascade at
c% = 1.3.

The procedure already outlined was followed. The
initial airfoil was chosen as the one just analyzed by
the direct method (fig. 10). The C?i!l?and as~oclated
constants of the initial atrfoll are given in tables 11
and 111. The initial C?.Vwa~ actually taken as 1.145
times the values of table II, because the u~e of the
method of potentials’ had indtcated this factor as a
preliminary over-all adjustment. The cl?ordwise loca-.
tlons of table 11 were consequently corrected. The
initial lift coefficient was taken as the area enclosed

V2()by the prescribed ~ -curve, nmely, cz = 1.260

The first-approximation dAxl/dV was thereupon
calculated from equation (34) and plotted In figure 11.
Except at 0 = 15 , this curve represents the solution
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of equation (34) with the negative square root for

- .. . .3.0°%&q.~ 1805 and the solution with the positive root... ....,.._-,.....
for the remaining (p-value&.””’--Alf””””cp””=”15;’;“the calm-...

d.6x1
Iated roots were complex. The ~-curve was therefore

falred through Q = 15° to complete the specification—
of dAxl/dq.- The Increment -

dCxl CIAxl

F=T

was then used to calculate the
juFate increment

dbyl Clhyl

T ‘T

dAxo
.—

dq

fir9t-approxtmatlon con-

dAyo
-—

dq

and the Incremental a!rfall.C%l? 6X1 + 15y~. The

Run~e 24-point schedule (see appendix A of reference 5)
was used for these calculations. The horizontal adjust-
ment then applled. to this CMF was such an to maintain
o 1, 0 = 45~ (with respect to the chord chosen for
th= initial airfoil, the so-called x-axis chord). T%(3
first approximate CMF ~s listed in table V and the
associated constants in table VI. The first approxi-
mate a~rfoll is ~hown in figure 10 and it~ exact
velocity di~trlbutlm, for Cz = 1.26, in figure 9.

The cascade flow anples for the derived sections are
piven h table VII.

The changep In velocity distribution and airfoil
contour and pasiti.on from their Initial values are se~n
to be considerable. The mean line of the derived sec-
tion is reflexed toward the trailing edge, probably
because of the influence on the “meant’streamline of the
vorticity toward.the leading edge on the upper neigh-
boring airfoil (fig. 5). The maximum thickness of the
derived section has been Increased from 10 percent to
about 15 percent. Furthermore, the section as a whole

1°has been rotated about 22 , with the result that the

cascade blade anple, although equal to 45° as meae-
ured from the initial or x-axis chord line, Is about
42.5° as measured from the l’longest-lineflchord In the
derived airfoil. A slight change in ca~cado solidlty
is similarly brought about.
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A second approximation to the prescribed velocity
distribution was next carried out, with the l.nltially
chosen chord maintained as the “chordltof the derived
airfoils. It was evident that the poor first approxi-
mation on the upper-surface leadlng edfle,particularly
for Q = 150, was due originally to fairlng the
d6xl
,~-curve through this point too smaothly. The

reiulting value of dAxl/dQ was not the best possible

real value, which is in this case the one that makes
the velocity on the airfoil at this point as high as
possible or, from equation (30),

($3F150=[%lpc’
()dAx2This value was therefore given to
w q-l~o

for the

second approximation with tineremaining values calcu-
lated as In the first approximation. The Incremental

d6x2 dAx2 dAx~
derivative ~ = ~ - —

do
thus obtained is shown

in figure 11. The conjugate function d6y2/dq calcu-
lated therefrom is shovm in figure 11. The oscillatory
nature of d6y2/dq fs caused by the large magnitude of

the higher harmonfcs in the Fourier series for d6x2/dq.

The 6y2-function, as obtatned by synthesis of the

integrated Fourier series for d5y2/d@, displayed very

little oscillation. The slopes of the smoothly drawn
6y2-curve were therefore measured graphically at all

but the CP=
d6y2

0°, 15° points. The ~-curve thus

obtained is seen from firure 11 to be a r~ean curve
iuiyz

through the calculated ~-values. This curve was

used tn the calculation of”the second-approximation
velocity distribution. use or the measured values of
d6y2/dQ as compared with the calculated values removed

an oscillation of, at most, ~ percent in the velocity

dlstrlbutlon. Any error in measurement of the
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d8y2
...... ..~=S.lOP~s wo,u>d-therefore produce the quite negligible.-

error of a small fraction of *2 ‘ptitic-tint;““ ““” -

The second approximation was carried out for
c1 = 1.26. The resultlng CMF and associated constants

are given In tables V and VI. The second-approxhatlon
airfoil and its exact velocity distribution are shown
in figures 10 and 9, respectively. Tinevelocity distri-
bution Is seen to be converging satl.sfactorlly to the
prescribed values, though perhaps not so rapidly as
would be the case for an isolated air~oll. The tendency
toward formation of a velocity bump about 60 percent chord
back on the upper surface Is seen. As previously men-
tioned for the direct method, this effect may be due to
the sudden constriction of the stream caused by the
forward part of the upper neighboring airfoil (fiC. 5).
The second approximate airfoil differs from the first
approximate airfoil mainly in having greater thickness
toward the nose aridless over-all camber. The greater
thickness toward the nose is evidently the consequence
of a higher required velocity on the upper surface at
the leading edge. The reduced over-all camber appears
to be caused by the necessity of a more constricted
stream over the rear upper surface (higher required
velocities) . The forward half of the upper neighboring
profile (fifl.5) sklfts downward to accomplish this
constriction.

A sharp cusp, possibly even a slight, physically
Impossible loop, is evident at the trailing edge.
Apparently, the prescribed velocity in this region is
close to being unattainable with a physically real
airfoil. The necessity of as sharp a cusp as possible
at the traillng edge seems definite.

From the practical point of view, two approxima-”
tlons are considered sufficient in this case. The
necessary modifications of the Initial airfoil to
produce the modified velocity distribution are clearly
indicated. The results of thfs and the preceding
example can now be used as good Initial approximations
in further modifications either of airfoil shape or of
velocity distribution, or, to a lesser extent, of
cascade geometry.



NACA ARR NO. L4K22b

CONCLUSIONS

1~ The direct and Inverse CartesIan mapping
function (CMF) methods already used for isolated air-
foils can be applied directly and analogously to the
cascade case.

2. The cascade problem represents a more severe
test of the CMF metk.od than does the Isolated-airfoil
problem. AlthouRh the convergence of the successive .
approx4~ations is slower in the case of cascades than
in the corresponding isolated-airfoil cases, the
numerical work for a.given accuracy 1s considerably
less than hitherto required, at least fcr cascade
solidifies near unity.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics.

La~ley Field, Va.
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. TABIJ3 I.- AIRFOIL ORDINATES, DIRECT PROC~S

-....... . [Stations.,and_,,ordinatesIn peroent of airfoil chord].,. ....-,...,..-. ,....

Upper surface Lower sumface

Station Ordln&te StatIon “Ordinate

o 0 0 0
.23 ● 97 ●77 -.43
.44 1.24 1.06 -.44
.88 1.66 1.62 -.46

2.03 2.63 2.97 -.37
4.43 4.17 5.57 -.13
6.87 5.44 8.13 .18
9.34 6.56 10.66 .48

14.34 8.46 15.66 1.08
19.38 9.98 20,62 1.64
24.44 11.24 25.56 2.16
29.55 12.20 30.45 2.60
34.64 12 ● 90 35.36 2.96
39.72 13 ● 39 40.28 3.29
44.82 13.64 45.18 3.58
49.96 13.65 50.04 3.91
55.07 13 ● 3? 54 ● 93 4.23
60.17 12.78 59.83 4.48
65.26 11.92 64.74 4.68
70.30 10.81 69.70 4.77
75.52 9.53 74.68 4.67
80.29 8.04 79.71 4.39
85.23 6.40 84.77 3.94
90 ● 17 4.56 89.83 3.10
95.10 2.57 94.90 1.89

100 0 100 0

NATIONAL &DV190RY
COMMITT3E FOR AERONAUTICS



z

ox+

:
3~.

5
6
7

:
10
11
12
13
14
15
16
17
L8
19
!0
!1
?2
!3

0.5
.0.5
.1.5
!2.5
!3.5

TABLEII.- CMF*s FOR ISOLATEDAIRFOILAND FOR AIRFOILSIN CASCADE ~~~ 4D~~~

Ax

-0.125

-.152
-.156
-.139
- ● 105
-.0515
.0105
.0744
● 122
.146
.148
.127
.0687
.0350

-.0121
-.0235
-.0042
.0223
.0319
.0317
.0277
.0063

-.0294
-.0788

by

).02’i
.07t
● 132
.18[
.23:
.26~
.27:
.25C
.21:
.16C
.101
.051
.014
.001
.02e
.067
.092
.092
.074
,057
.032
●009
● 007
● 006

.0.137

-.065:
,013C
.0905
.175
.228
.244
.228
.150
● 0553

-.0401
-.116
-.180
-.215
-● 122
.027S
.105
.0693
● 005

-.003
-.0458
-.105
-.168
-.206

0.165 0.987

.208 .923

.220 .810

.205 .653

.160 .462

.0770 .252
-.0250 .0314
-.124 -.187
-.196 -.403
-.214 -.604
-.200 -.776
-.162 -.906
-.107 -0982
.0245 -.998
.149 -.936
.146 -.7?4
.0497 -.529

-.0595 -.239
-.06!32 .0528
-.0646 .335
-.101 .594
-.0850 .799
-.0350 .937
.0721 .996

k

),197

.372

.528

.645

.721
,760
.778
.766
.750
.685
.567
.394
.192
.0654
.412
.745
.963
1.031
1.005
.964
.829
.616
.347
.0966

Cascade

Ax

.0.729

-,610
-.346
-.190
-Ooase
-.0123
.0407
.0776
.113
● 122
.146
.0739

-.0042
.227
.382
.371
.355
.303
.257
.177
.0866

-.0484
-.216
-,490

i+

~o.155

-.029
.008
● 005

-.003
-.013
-.026
-.036
-.049
-.060
-.074
-.095
-.047
-.012
-.071
-● 113
-.149
-.176
-.202
-.225
-.247
-.264
-.273
-.258

d~x
w

●0.315

1.028
.800
.466
.320
.230
.170
.122
.084
.0591
.0281

-.557
.293

1.087
.10

-.04
-.12
-.18-
-.235
-.28
-.395
-.569
-.794
B1.218

1.695

1.024
.0408

-.0627
-.110
-.14
-.14
-.14
-.14
-.16
-.28
.0480
.896

-.304
-.745
-.46
-*35
-.30
-.28
-.27
-.24
-.14
.03
.631

I).755 0.366

.982 :181

.989
I
.150

.927 .510

.848 .825

.762 1.095

.667 1.289

.560 1;392

.436 1.386

.273 1.264

.0530 1.045
..325 .810
..864 .354
..982 ● 174
..853 .503
..744 .795
..638 1.023
..544 1.175
s.448 1.247
..354 1.256
.,247 1● 144
..124 ● 974
.0499 .798
.316 .577

Interpolated

z
o.

r

w
CJl

.



TABLE III.- TRANSFORMATION CONSTANTS FOR TABLE II

P dcz

= (deg) K m ‘T ‘T T T R

Cascade 1 45° 0.258 22°57~ 190°0f 10°4f 4.65 0.197 ------

Isolated 0 0 m -100~of 191022! 11022f 6.86 .02091.0912

TABLE IV.- VARIATION OF FLOW ANGL3S WITH IILAIELCADING

‘t
Ct I a I A Ad AA– Pu-Pd

Cascade

I

,

I

o -loot#t34056t 34055f 34°56‘

.5 -3054f 41°6~ 46°6f 35019i
1.0 2021? qvozl t 550~71 35043I

1.17 4°31f .49°31f 58°23I 35051f
(ideal)
1.3 I 6°10f 151°1W 160a24&5054f

Iro .5100
1,28

(Ideal)
1.5
2.0

Isolated

-11°22f
Jpll?
-2°59f
-0°36t

1°16f
5°36?

24°S01 I 706f

27°15! I 403t33°191 -2=41!

33°52f
29°41t
25°29I
23°6f

I21°14f16°541

18°1I

o
.329
.734
● 891

1 ● 013

II18°19! 1,214
18°59f 1.741

g

!3,
!$’

15°451“
19°56t
24°8f
26°31f
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TABLE V.- CASCADE CMF’BY INV3RSliMETHOD ;
1

First approximation ‘,

Ayl dAxl dAyl xl
Q Axl kl Vz#J

T ~
,

~ T (CZ = 1.26) :

OX* -0.717 -0.241 -0.411 1.673 0.768 0 ● 344 1.598 Upper
-.621 - ● 114 .987 1.028 .989 .161 1.248 surface

: -.37? -.0798 .701 -.0011 .982 .204 ● 737
.

3 -.258 -.0838 .324 -.0440 .904 .599 a;803
4 - ● 195 -.0873 .184 -.0176 .810 .936 .819
5 -.155 - ● 0886 .124 -.0322 .712 1.194 .829

- ● 134 - ● 0902 .3862 .0342 .607 1.366 .832
; -.115 -.0858 .0694 .0201 .494 1.430 ● 834

Lower

8 -.0973 -.0816 .0666 .129 .364 1 ● 359 ● 832
>surface

9 -.0831 -,0718 .0933 .C547 .203 1.228 ,839
10 -.0550 -,0566

● 186 .248 -.0158 .979 ● 840
11 .0016 -.0312 .213 .176 -.356 .691 .793
12 .0747 -.0125 ● 575 .502 -.867 ● 319 .708 d
13 .336 ● 0021 1.216 -.418 - ● 974 ● 197 ● 614
14 .534 -.0695 .265 -.958 -.826 .587 .809
15 .545 - ● 130 .0172 -.683 -.706 .879 .916

.532 -.183 -.128 -.533 -.597 1.073 1.018
;: .468 -.223 > Upper-.210 -.441 - ● 507 1.191 1,104
18 ● 409 -.261 -.287 -.410 -.414 1.232 1.184 surface

19 .306 -.294 -.366 -,373 -.327 1.194 1.268
20 .188 -.322 -.464 -.272 -.230 1.055 1.386
21 .0358 - ● 343 -.624 -.225 -.112 ● 938 1.442
22 -.162 -.357 -.919 .0363 .0527 .748 1 ● 533
23 -.460 -.341 -1.245 .624 .317 .563 1.551 *

—



Q

ox+
1

2
3
‘4
5
6
7
8

1:

::
13
14

i:
17
18
19
20
21
22
23

TABLE V.- CASCADE CMF BY INVERSE KE?THOD- Concluded

Second approximation

AX2

.~my76

-.648
-.494
-m~lo
-.238
-.162
-.129
- ● 0801
-● 0502
-.012C
.035C
.112
.163
.385
.554
.532
● 503
.423
.364
.250
.150

-.00IC
-,180
-.488

Ay2
T

-0.212

-.120
-.0514
-.0418
-.0417
-.0409
-.0425
-.0392
-.0383
-.0318
-.0233
-.0208
-.00877
.00050

-.0732
-.131
-.179
-.214
-.247
-.274
-.296
-.316
-.329
-.310

-0.220

.280

.788

.384
,226

.152

.116

.0986

.0761

.124

.218

.178

.364
1 ● 044
.0837

-.135
-.240
-.294
-*359

-.418
-.454
-.660
- ● 944

■1.246

.—

1.269

.988

.236
,0401
.0130

-,0188
.0258

-.00847
,0910
.00128
.1309

- ● 00737
.38(3

-.459
-.948
-.634
-.468
-.376
-.345
-.306
-.241
-.218
.0611
.653

X2
7

0.802

1.0
.957
.896
.804
.717
.615
.511
.385
.231
.0197

-.319
-.856
- ● 974
-.828
-.716
-.611
-.524
-.431
-.348
-.244
-.126

● 0440
.308

k2

0.334

.124

.205

.575

.908
1.166
1 ● 332
1.394
1.369
1.198

● 954
.681
.318
● 188
.544
,796
● 973

1.092
1.135
1.120
1.079
.908
.730
.555

~

:Cz = 1.26)

1.588

1.508
.776
● 841
.842
.843
.842
.844
● 832
.845
.848
.790
.691
,657
.862
● 996

1 ● 104
1.184
1.262
1.327
1.343
1.456
1.531
1.528

.

:

d
,

.-

Upper
9urfac:e

Ikmer
surface

J

4

>
;

.,

Upper
surface

.



TABLE VI.- ASSOCIATED CONSTANTS FOR CMF OF TABLE V

[u = 1, p= 450]

IApproxlmatlon
.2

(:)
1,001
1.001

(HKl%lq h
(a)

705f

Idc~/da T

I4.69 0.167

4.75 .172a-

%easured from ‘longest-line” chord of ab?foll.

TABLE VII.- CASCADE FLOW A??GLESFOR DSRIVED AIRFOIL SECTIONS

Approxlmation CL k
(:)

h A~ AA 6N 6T ~u - pd

1 1.26 8~30~ 51° 60°4~ 36°18~ 23°46t 6°321 -7%3 f 0.98

2 1.26 10°6~ 51°36I @31~ 37041 23°271 -8°421 -7°56 999
s
aMeasured from ‘tlongest-llnef’chord of airfoil.

I
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NACA ARR NO. L4K22b Fig. 3
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Fig. 6 NACA ARR No, L4K22b-
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NACA ARR No. L4K22b Fig. 7
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Fig. 8 NACA ARR No. L4K22b
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NACA ARR No. L4K22b Fig. 9

F!gum 9.— Veloc~tydistr~buiions in cascude
by jnverse method.
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